UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2008 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Type of mark

In general:

- (i) <u>'M' marks</u> are awarded for any correct method applied to the appropriate numbers, even though a numerical error may be involved.
 - a) Once earned they cannot be lost.
 - b) They are earned for a numerical statement which is usually explicit as regards the quantity to be found.
 - c) e.g. the use of a wrong formula, wrong trigonometrical ratio or misapplication of 'Pythagoras' is wrong method.
- (ii) <u>'A' marks</u> are awarded for a numerically correct stage, for a correct result or for an answer lying within a specified range.
 - a) They are given only if the relevant 'M' mark has been earned.
 - b) They are not given for a correct result following an error in working.
- (iii) <u>'B' marks</u> are independent of method and are usually awarded for an accurate result or statement.
- (iv) In graph or drawing questions some marks may carry a letter (e.g. G4 for drawing the graph, Q1 for quality, L3 for drawing loci) to make their identification easier.

Abbreviations which may be used in mark schemes or in comments on scripts:

A.G.	Answer given
b.o.d.	Benefit of doubt
c.a.o.	Correct answer only
(in)dep	(In) dependent
Ex.Q.	Extra question
1	Follow through
1	Further error made
I.S.W.	Ignore subsequent working
M.R.	Misread
o.e.	Or equivalent
O.W.	Omission of essential working
P.A.	Premature approximation
S.C.	Special case
s.o.i.	Seen or implied
S.O.S.	See other solution
t.&e.	Trial and error
W.W.	Without working (i.e. answer only seen)
W.W.W.	Without wrong working
(£) or (°)	Condone the omission of the £ or degree sign etc.

GCE O LEVEL - MayJune 2008 4024 02 1 (a) $\pi \times (\lim_{0 \to 7^{2} \times 15 \text{ or } \pi 7^{2} \times 1500})$ 0.23 to 0.231 M1 A1 A1 A1 A1 B1 Condone 14/2 for M1 SC1 for 0.92 \rightarrow 0.924 (b) (i) $\cos T\hat{P}A = \frac{15}{23}$ M1 49.29 to 49.3 A1 B1 Sin T = \frac{12 \sin 37}{15} = (28.7 - 29) M1 B1 [2] GRAD ANSWERS (i) 54.77 (ii) 28.94 \rightarrow (iii) 33.97 $\sin T = \frac{12 \sin 37}{15} = (28.7 - 29)$ M1 B $\hat{P}T = 114 - 114.22$ A1 A1 B1 [3] (ii) 28.94 \rightarrow (iii) 33.97 2 (a) (i) 31.2 to 31.3 A = 33 to 33.12 M1 A1 A1 [2] SC1 for 56.8 to 56.9 2 (a) (i) $\frac{128 - 40}{50}$ o.c. 1.76 M1 A1 [2] SC1 for 56.8 to 56.9 3 (a) (i) $\frac{128 - 40}{50}$ o.c. 1.76 M1 B1 [1] 560 (c) \checkmark (iii) $\frac{128 - 40}{50}$ o.c. 1.76 B1 [1] 560 (c) \checkmark (iii) $\frac{128 - 40}{50}$ o.c. 1.76 B1 [2] (S)0.28 \checkmark (b) (i) (b)55.6(0) B1 [1] 560 (c) \checkmark (iii) 16 B2 [2] SC1 for 15 3 (a) $\frac{75 \times 60 \times 24 \times 7 \times 50 \text{ or figs 378 or figs 37 or figs 38}{3.78 \times 10^{7}}$ M1	Page 3			Mark Sch	Syllabus Paper			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					GCE O LEVEL – M	4024 02		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
(ii) (ii) (ii) $ \frac{12}{\sin 7} = \frac{15}{\sin 37} $ (ii) $ \frac{12}{\sin 7} = \frac{15}{\sin 37} $ (iii) $ \frac{12}{\sin 7} = \frac{12 \sin 37}{15} = (28.7 - 29) $ (ii) $ B^2 T = 114 - 114.22 $ (iii) $ \frac{128 - 40}{50} \text{ o.e.} $ (iii) $ \frac{16}{11} $ (iv) $ \frac{16}{12} $ (v) $ \frac{16}{12} $ (v) $ \frac{18}{2} = \frac{x}{15} \text{ o.e.} $ (v) (v) $ \frac{18}{2} = \frac{x}{15} \text{ o.e.} $ (v) (v) (v) $ \frac{18}{2} = \frac{x}{15} \text{ o.e.} $ (v) (v) $ \frac{18}{2} = \frac{x}{15} \text{ o.e.} $ (v) (v) $ \frac{18}{2} = \frac{x}{15} \text{ o.e.} $ (v) (v) $ \frac{18}{2} = \frac{x}{15} \text{ o.e.} $ (v) (v) (v) $ \frac{18}{2} = \frac{x}{15} \text{ o.e.} $ (v) (v) (v) (v) (v) (v) (v) (v)	1	(a)		$ \begin{array}{c} \pi \times \\ \pi \times \\ 0.23 \end{array} $	(fig 7) ² × 15 or figs 23 0.07 ² × 15 or $\pi 7^2 \times 1500$ 3 to 0.231	A1	[3]	
(i) $\frac{12}{\sin T} = \frac{15}{\sin 37}$ $\sin T = \frac{12 \sin 37}{15} = (28.7 - 29)$ $B\hat{P}T = 114 - 114.22$ (ii) 33.97 (iii) 33.97 (iii) 33.97 (iii) 33.97 (iii) 33.97 (iii) 33.97 (iii) 33.97 (iii) $31.2 \tan 4 = \frac{15}{23}$ $A = 33 \tan 3.12$ (ii) $31.2 \tan 3.12$ (i) $31.2 \tan 3.12$ (i) $\frac{128 - 40}{50}$ o.e. 1.76 (i) $\frac{128 - 40}{50}$ o.e. 1.76 (ii) $\frac{128 - 40}{50}$ o.e. 1.76 (ii) $\frac{128 - 40}{50}$ o.e. (iii) $\frac{16}{28(c)}$ (iii) $\frac{16}{28(c)}$ (iii) $\frac{16}{28}$ (iii) $\frac{16}{28}$ (iii) $\frac{75 \times 60 \times 24 \times 7 \times 50 \text{ or figs 378 or figs 378 or figs 376 \text{ or figs 377 or figs 378 or figs 376 \text{ or figs 378 or figs 376 \text{ or figs 376 or figs 378 or figs 378 \times 10^{7}$ (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 (c) $\frac{x}{15} = \frac{18 + x}{17}$ or $\frac{x}{15} = \frac{2x + 18}{32}$		(b)	(i)	cos	$T\hat{P}A = \frac{15}{23}$	M1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						A1	[2]	
$B\dot{P}T = 114 - 114.22$ A1 [3] (iii) $\tan A = \frac{15}{23}$ MI [2] SC1 for 56.8 to 56.9 2 (a) (i) 31.2 to 31.3 B1 [1] (ii) $\frac{128 - 40}{50}$ o.e. MI Image: Constraint of the second se			(ii)	$\frac{12}{\sin}$	$\frac{2}{T} = \frac{15}{\sin 37}$	M1		
(iii) $ \begin{array}{c c} \tan A = \frac{15}{23} \\ A = 33 \text{ to } 33.12 \end{array} \qquad \begin{array}{c c} M1 \\ A1 \end{array} \qquad \begin{array}{c c} [2] \end{array} \qquad \text{SC1 for } 56.8 \text{ to } 56.9 \end{array} \\ \hline \\ \textbf{2 (a) (i)} \qquad 31.2 \text{ to } 31.3 \\ (ii) \qquad \frac{128 - 40}{50} \text{ o.e.} \\ 1.76 \qquad \qquad \textbf{M1} \\ 1.76 \qquad \qquad \textbf{M1} \\ 1.76 \qquad \qquad \textbf{M1} \\ M$				sin	$T = \frac{12\sin 37}{15} = (28.7 - 29)$	M1		
A = 33 to 33.12 A1 [2] SC1 for 56.8 to 56.9 2 (a) (i) 31.2 to 31.3 B1 [1] (ii) $\frac{128-40}{50}$ o.e. M1 Image: Constraint of the second sec				BŶ	T = 114 - 114.22	A1	[3]	
2 (a) (i) 31.2 to 31.3 B1 [1] (ii) $\frac{128-40}{50}$ o.e. M1 M1 1.76 A1 [2] (b) (i) (\$)5.6(0) B1 [1] (iii) shop B (\$)14.1(2) soi B1 [2] (iii) shop B (\$)14.1(2) soi B1 [2] (iii) 16 B2 [2] (iii) 16 B2 [2] SC1 for 15 3 (a) $75 \times 60 \times 24 \times 7 \times 50$ or figs 378 or figs 378 or figs 37 or figs 38 M1 (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 [2] (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 e.g. $\frac{x}{15} = \frac{18+x}{17}$ or $\frac{x}{15} = \frac{2x+18}{32}$			(iii)	tan∠	$4 = \frac{15}{23}$	M1		
(ii) $\frac{128-40}{50}$ o.e. 1.76 (ii) $\frac{128-40}{50}$ o.e. 1.76 (ii) $(\$)5.6(0)$ (ii) $\$hop B(\$)14.1(2)$ soi 28(c) (iii) 16 (iii) 18 3.78×10^7 (iii) 18 $2 = \frac{x}{15}$ o.e. (iii) 18 (iii) 18 $2 = \frac{x}{15}$ o.e. (iii) 18 (iii)				A =	33 to 33.12	A1	[2]	SC1 for 56.8 to 56.9
$\overline{50}$ o.e. MI 1.76 A1 [2] (b) (i) (\$)5.6(0) B1 [1] 560 (c) \checkmark (ii) shop B (\$)14.1(2) soi B1 [2] (\$)0.28 \checkmark (iii) 16 B2 [2] SC1 for 15 3 (a) 75 × 60 × 24 × 7 × 50 or figs 378 or figs 37 or figs 38 M1 [2] (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 [2] (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 [2]	2	(a)	(i)	31.2	2 to 31.3	B1	[1]	
(b) (i) (\$)5.6(0) B1 [1] 560 (c) \checkmark (ii) shop B (\$)14.1(2) soi B1 [2] (\$)0.28 \checkmark (iii) 16 B2 [2] SC1 for 15 3 (a) 75 × 60 × 24 × 7 × 50 or figs 378 or figs 38 are 10^7 M1 A1 [2] (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 e.g. $\frac{x}{15} = \frac{18 + x}{17}$ or $\frac{x}{15} = \frac{2x + 18}{32}$			(ii)	128	$\frac{3-40}{50}$ o.e.	M1		
(ii) shop B (\$)14.1(2) soi 28(c) (iii) 16 B1 [2] (\$)0.28 \checkmark B2 [2] SC1 for 15 3 (a) 75 \times 60 \times 24 \times 7 \times 50 or figs 378 or figs 37 or figs38 3.78 \times 10 ⁷ A1 [2] (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 (c) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 (c) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 (c) $\frac{18}{2} = \frac{x}{15}$ o.e.				1.70	5	A1	[2]	
28(c) B1 [2] (\$)0.28 (iii) 16 B2 [2] SC1 for 15 3 (a) $75 \times 60 \times 24 \times 7 \times 50$ or figs 378 or figs 37 or figs38 3.78 $\times 10^7$ M1 [2] (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 [2] e.g. $\frac{x}{15} = \frac{18 + x}{17}$ or $\frac{x}{15} = \frac{2x + 18}{32}$		(b)	(i)	(\$)5	5.6(0)	B1	[1]	560 (c) ✓
3 (a) $75 \times 60 \times 24 \times 7 \times 50$ or figs 378 or figs 378 or figs 37 or figs 38 3.78 $\times 10^7$ M1 [2] (b) $\frac{18}{2} = \frac{x}{15}$ o.e. M1 e.g. $\frac{x}{15} = \frac{18 + x}{17}$ or $\frac{x}{15} = \frac{2x + 18}{32}$			(ii)				[2]	(\$)0.28 ✓
(b) $\begin{aligned} & \text{figs 37 or figs 38} \\ & 3.78 \times 10^7 \end{aligned} \qquad \text{A1} \qquad [2] \\ & \text{M1} \end{aligned} \qquad \text{e.g.} \frac{x}{15} = \frac{18 + x}{17} \text{ or } \frac{x}{15} = \frac{2x + 18}{32} \end{aligned}$			(iii)	16		B2	[2]	SC1 for 15
(b) 3.78×10^7 A1 [2] $\frac{18}{2} = \frac{x}{15}$ o.e. M1 e.g. $\frac{x}{15} = \frac{18 + x}{17}$ or $\frac{x}{15} = \frac{2x + 18}{32}$	3	(a)				M1		
						A1	[2]	
		(b)		$\frac{18}{2}$	$=\frac{x}{15}$ o.e.	M1		e.g. $\frac{x}{15} = \frac{18+x}{17}$ or $\frac{x}{15} = \frac{2x+18}{32}$
						A1	[2]	

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2008	4024	02

	(c)	(i)	156	B 1		
		(ii)	40	B1		
		(iii)	$220 - \frac{5H}{4}$ o.e isw	B2	[4]	SC1 for (±) $\frac{5H}{4}$ soi <u>or</u> any correct expression for -n
4	(a) (b)	(i)	Ext. angle = $\frac{360}{8}$ or Sum of int $\angle = (2.8 - 4) \times 90$ o.e. Correct method $\rightarrow 135$ $x = 22\frac{1}{2}$ y = 45 z = 45 $t = 67\frac{1}{2}$	M1 A1 B1 B1 B1 B1	[2]	AG
		(ii) (iii)	Trapezium $CE = \sqrt{100 + 100} \text{ or } \frac{10}{\sin/\cos 45}$ $= 14.1 \rightarrow 14.2$	B1 M1 A1	[1]	Any recognizable word.
			$y = z$, $B\hat{G}F = E\hat{G}C$, $(F\hat{B}G = G\hat{E}C)$ 1.96 \rightarrow 2.02	B1 B1	[2]	Accept any 2. Or any equivalent integer fraction.
5	(a)	(i)	24	B1		
		(ii)	8	B1		
		(iii)	31	B1	[3]	
	(b)	(i)	$\frac{5}{36}$	B1		
		(ii)	$\frac{1}{9}$ o.e.	B1		-1 once for un-simplified answers in (b)(i), (ii), (iii)
		(iii)	$\frac{1}{6}$ o.e.	B2	[4]	SC1 for $\frac{1}{12}$

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2008	4024	02

(c)	(i)	(215)	B 1		Condone 215
		(ii)	(Total) distance (travelled)	B 1		Dep. on single element in (c)(i).
		(iii)	43(km/h) J	B1	[3]	their 215 ÷ 5, can be from 3 elements in (c)(i).
6 (a)	(i)	64.2	B 1		
		(ii)	Either 64.5 or 63.6 0.9	M1 A1		Accept answers correcting to any of these values
		(iii)	50 cao	B 1	[4]	
(b)		Paul – smaller IQR 🦨	B 1	[1]	Provided answer to (a)(ii) is < 1.5
7 (a)	(i)	7500×0.88^2 o.e. 5808 or 5810	M1 A1	[2]	
		(ii)	$6490 \times \frac{100}{88}$ o.e.	M1		
			7375 or 7370 or 7380	A1	[2]	
		(iii)	100, 88, 77, 68, (60, 53, 46.4) o.e. 6 th day or Sunday	M1 A1	[2]	
(b)	(i)	$\frac{4}{3}\pi.18^3\times\frac{1}{2}$	M1		
			$12200 \rightarrow 12220$	A1	[2]	SC1 for $24400 \rightarrow 24440$
		(ii)	$2\pi 18^2 + \pi 18^2$ $3050 \rightarrow 3055$	M1 A1	[2]	
(c)		Use of $\left(\frac{h}{12}\right)^3$ or $\left(\frac{1080}{5000}\right)^{\frac{1}{3}}$	M1		
			$7.1 \rightarrow 7.3$	A1	[2]	

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2008	4024	02

8	(a)	0.2	B1	[1]	
	(b)	Correct scales 8 correct plots (within 1mm) Smooth increasing curve (not grossly	S1 P1		Condone reversed axes. Accept if curve goes through correct point(s) [Ignore $x < -1$]
		thick) through at least 5 of his plots	C1	[3]	
	(c)	0	B1	[1]	
	(d)	Clear attempt at tangent (be generous) $4 \rightarrow 5$	T1 G1	[2]	Accept integer fractions.
	(e) (i)	Straight line thro' (08) And thro' (4,0)	L1 L1	[2]	Produce if necessary.
	(ii)	Approx (2.2, 3.6) [each coord ± 0.1] \checkmark	B 1	[1]	
	(iii)	$A = -2\frac{1}{2}$	B 1		SC1 for $\frac{4}{5}2^x = 8 - 2x$ seen
		$\mathbf{B} = 10^{2}$	B1	[2]	5
			54		
9	(a) (i)	222° 107°	B1 B1	[2]	
	(b) (i)	Attempt at cosine rule $HL^2 = 4.5^2 + 2.8^2 - 2 \times 4.5 \times 2.8 \cos 115$ 38.7 to 38.74 6.2 to 6.23	M1 M1 A1 A1	[4]	e.g. $4.5^2 + 2.8^2 \pm (2) 4.5 + 2.8 \cos 115/65$ HL can be implied by later working
	(ii)	$\frac{1}{2} \times 4.5 \times 2.8 \times \sin 115$ 5.7 to 5.71	M1 A1	[2]	Possible GRAD ANSWERS (b) (i) 33.77 5.83
	(c) (i)	$\frac{\text{Area}}{2.25} \text{ or } 2.8 \sin 65$	M1		(ii) 6.13(c) (i) 2.39 or 2.72
		2.23 2.53 to 2.54	A1	[2]	
	(ii)	$\frac{\text{DistHA}}{\text{Speed}} = \frac{4.5}{3}$	M1		
		0650 (h)	A1	[2]	6 50 (am)
				<u> </u>	

Page 7

10 (a)	(i)	8 – <i>x</i>	B1		
	(ii)	$\frac{1}{2}x(8-x)$	B1	[2]	Condone omission of brackets.
(b)		$\frac{1}{2}x(12 - x)$ 12 × 8 - x(8 - x) - x(12 - x) Correct working to 2x ² - 20 x + 96	B1 M1 A1	[3]	Condone omission of brackets. Must see at least one step. AG
(c)		$2x^2 - 20 x + 96 = 60$ & working	B1	[1]	AG
(d)		For numerical $\frac{p \pm \sqrt{q}}{r}$ p = 10 and $r = 2\sqrt{q} = 5.29 or q = 287.65 and 2.35 or 2.36$	B1 B1 B1	[3]	- ⁻¹⁰ not far enough but can be implied.
(e)	(i) (ii)	k = 46 Area = 46 or his k $x = 5$	B1 B1 B1	[3]	
11 (a)	(i)	Translation $ \begin{pmatrix} -6 \\ 3 \end{pmatrix} $	B1 B1	[2]	Accept in words but not $(-6, 3)$ NB: mention of 2^{nd} transf. loses both marks in each part
	(ii)	Enlargement SF $-\frac{1}{2}$, Centre (-2, 1)	B1 B1	[2]	
	(iii)	Rotation 90° AC o.e. Centre (-1 0)	B1 B1	[2]	Accept +90°
	(iv)	$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$	B1	[1]	
(b)	(i) (a) (b) (c)	p + 2q o.e. 2p - 2q o.e. $\frac{1}{3}p + \frac{2}{3}q \text{ o.e.}$	B1 B1 B2	[4]	-1 once for unsimplified answers. SC1 for $\overrightarrow{QS} = \overrightarrow{QR} + \frac{1}{6}\overrightarrow{RT}$ o.e. soi or ans. of $-\frac{1}{3}p - \frac{2}{3}q$
	(ii)	$\frac{1}{3}$ cao	B1	[1]	Allow only if correct OR and QS seen